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ABSTRACT

Many heating problems in tokamaks are inherently three dimensional,
involving the velocity coordinates parallel and perpendicular to the ambient
magnetic field and the plasma radial coordinate. We will describe a new
three-dimensional, Fokker-Planck/rf quasilinear code. This code is based upon
a two-dimensional in velocity space Fokker-Planck code which solves for the
distribution evaluated at the outer equatorial plane (8 = 0) of each flux

surface in a radial mesh.

The rf energy density & satisfies the transport equation

V . (lgg) = = pAB59
where vg is the group velocity of the ordinary or extraordinary wave and PABS
is power absorption obtained using results of the Fokker-Planck code. The rf

quasilinear operator is a functiomal of the wave polarization. Warm plasma

relations are used for the group velocity and polarizatioms.

With knowledge of Pppgs the transport equation is employed to obtain £,
which is used update the quasilinear diffusion coefficients and resume the
Fokker-Planck calculation on the various flux surfaces. The procedure of

alternately solving the Fokker-Planck equation and the transport equation is

repeated to steady state.
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|. Introduction

The two dimensional (v=speed. §=pitch angle) bounce- averaged Fokker-Planck code
CQL (for Collisional QuasiLinear) was developed to simulate a multispecies magnetized
plasma whose evolution is governed by an equation with dominant diffusive mechanisms due
to small angle Coulomb collisions and wave particle interactions. The starting point is the
kinetic equation (with collisions):

of
at

where T'; represents the current density in velocity space due to small angle Coulomb collisions.
We are interested in phenomena which evolve on time scales slow with respect to rapid
fluctuations associated with the wave. gyro or bounce periods; we therefore average the
equation over the appropriate periods. presuming that in order of magnitude

+v- U+, (q(E+%xB)f+I‘c)=0 (1)

> ws>»v.~vy (2)
where (1 is the gyro-frequency, wy the bounce frequency and v, and vq the corresponding
frequencies for particle- particle and wave-particle interaction.

The model presupposes a symmetric magnetic well in which there occurs nearly recurrent
motion of frequency wy. with which a gyro-center executes its orbital motion in the varying
field structure: 5 p 4

T L L)
=1y = f = ¢ =, (3)
vcos @ v

Here ds is the element of arc length along the magnetic field line associated with the gyro-
center motion. The magnetic moment 4 = mv2sin §/2B and the energy mv? /2 are invariants
of the unperturbed motion. Defining ¢ = B(s)/B(0). the invariance of u can be restated as
sin @ = ¥sin® 6, where 0 is the pitch angle coordinate at a fixed point s = 0, the bottom of
the symmetric magnetic well. Since all orbits pass through this point. a Poincare map there
serves well as a representative constants-of-motion space in which to describe the evolution
of the distribution on gyro-center orbits of paricle populations. We adopt the notation that a

* Work performed under the auspices of U.S.D.O.E. by LLNL under contract No. W-7405-
ENG-48.
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subscript ¢ shall adorn quantities evaluated at this point which hereafter we refer to as the
outer equatorial midplane.

Once the appropriate averaging procedures have been applied to (1) the bounce-averaged
Fokker-Planck equation which results may be expressed in particle conservation form

L) ~
(58) - v
6t J cqt

= N2 5ug 5= Do+ E F, 7 (4
’7(0(2) avo(AO +BOavo +Coaoo) + ’U025m00 300( o+ Oa + 0800)) (s) ( )

(L 3Go 1 6)(0)
v dvp  vo?sinby 3y

Here v = 4rz%e'/m? and the coefficients Aq — F; represent the sum of particle-particle,
wave-particle and small amplitude steady electric field effects. appropriately bounce-averaged.
The quantity A = vgcos g7y is a geometric length factor and the conserved quantity. the
number of particles on a field line, is

0= 33_1: = fd3vo vocosoorﬂ(g) = /d3v0 VoCOS OOTB((VV f))
cql

ot
= /‘d3v0 Vvo . fo

This invariant is enforced in the code down to roundoff.

Many heating problems in tokamaks are inherently four dimensional, involving not only
the velocity space coordinates (vg,8). but the spacial coordinates (r,6,) as well. Recently,
we have generalized CQL to CQL3D by adding effects involving these coordinates. The new
code solves the Fokker-Planck equation at a number of flux surfaces in parallel and computes
the local power absorption P,;, as a function of minor radius r and poloidal angle 6,. Coupling
between the various flux surfaces is achieved through the solution of a transport equation for
&x. the RF energy density

(5)

V. (vggk) = —Pqps (6)

where v, is the group velocity of the ordinary or extra- ordinary wave. The generation of ¢y

allows the recalculation of self-consistent RF coefficients and will be discussed in detail in
Section ll.

Il. Numerical Features of CQL

IlLA The Fokker-Planck equation (4) requires the generation of the six coefficients Ag — Fo
which represent the accumulated effects of all relevant physical processes. Kerbel and McCoy?
have discussed the generation of the quasilinear coefficients By, — Fo,,. In that case, the
relevant bounce-averages can be evaluated analytically in the asymptotic limit (75 — oo since
the region of wave-particle resonant interaction is localized. On the other hand, collisions
occur everywhere along a particle trajectory and for non-linear calculations the Fokker-Planck
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coefficients Ag. — Fy, must be computed through the numerical bounce-average of the local
Fokker-Planck coefficients:

Ao=X(A4); Bo=MBY: Co= (=0 .
cosé cos § cos? §
Do = A<(¢Cosoo D)); Eo =X ¢ oy ——E); Fp= )\«WF»

The calculation of the local coefficients is well known! and will not be described here. except
to say that the Rosenbluth potentials and the distribution functions are expanded in Legendre
series. The local coefficients A — F are evaluated at a pitch angle 8 such that the particle’'s
orbit traced back to the midplane intersects at the midplane mesh point 8y. This eliminates
the need for interpolation during the bounce-average, which is reduced to a trival addition.
Thus for 8o(z), vo(s) we have the bounce-average of a function g(v, 8, s) approximated by

g

/ 050 (v,—,0(0,-,3), s)
”1-91 (8)

=Y " gdra(5,i,0)
1

a(v;,0; <(gv 6, 3)

and sy is the bounce point and the bounce time on the left hand side of (8) is given by the

sum
Ta(v,,0;) = Z drs(7,1,1).
1

I1.B Conservation of particle density is achieved by a numerical analogue of (4). The only
difficulty that presents itself is to be found at the trapped/passing boundary. Here a separatrix
divides the particles on banana orbits from those on passing orbits and 75 has a logarithmic
singularity. The ordering (2) breaks down in a small boundary region in the neighborhood
of this feature. The proper boundary condition is that of flux balance; the total number of
particles leaving the passing regions should equal the sum of the number of particles entering
the trapped region and the boundary layer. This requires knowledge of the average value of
A = vyoTpsin b dfy in the boundary region, and this is evaluated through a series expansion
for 75 involving elliptic integrals and a Hastings polynomial expression for K and E. the
complete elliptic integrals.

II.C Time advancement is currently achieved by a splitting scheme, which while adequate
for time dependent calculations on a single flux surface is probably inadequate for multi-flux
surface calculations. The program described byO'Brien et.al.® uses a Gaussian elimination
method which is presently being adapted to this code to allow fully implicit differencing.
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Ill. Three Dimensional Generalization - CQL3D

The three dimensional version CQL3D resulted from a desire to obtain a global picture
of electron distribution function evolution throughout the plasma cross section in the presence
of ECRH excitation. There are two major components to the calculation. The first is the
computation by CQL, run in parallel at a number of neighboring flux surfaces, of #(v,8,r;t)
and P,p,(r,0p). This latter power is that RF power absorbed in a given poloidal neighborhood.
The second component provides the linkage between the flux surfaces themselves through a
solution of the transport equation for RF energy density £x. The quantity & may be used to
determine E_ the right hand component of the electric field. This allows for the recalculation
of the four quasilinear coefficients and thus feeds back into CQL. We will first describe the
model used for the calculation of the wave damping and £i. then touch upon the coupling of
CQL with the wave damping model. with an emphasis on parallelization.

IIl.A For simplicity, in this report we consider only the component of the group velocity
in the €g (major radial) direction-rays propagate parallel to the equatorial plane (Fig. 1).
- RF power flowing into horizontal ray channels is constant from z = 0 to z = 2; and then
decreases linearly to zero at z = z;. Up/down symmetry is assumed. This model avoids
some of the complexities that would arise if the group velocity v, were general. and provides
a physically reasonable and numerically tractable initial approach to the problem.

The total RF antenna power is specified as is the mode type, ie. O-mode or X-mode.
Also required are the local background electron and ion temperature and density. the parallel
wave refractive index and the wave frequency. A warm plasma dispersion relation subroutine
is used to determine the group velocity v, the energy density factor

1 {B-B‘ E duwK E}

1= e \ B Tl e [HI ©)

and the fraction of right-hand polorization |[E_/E|2. Here K is the warm plasma dispersion
tensor and as mentioned before. we take v, — v, -€r€r. The transport equation for energy
density (6)

V- (vgék) = —Pabs (k) (10)

is now employed to obtain £i. In the current approximation V- = 3/0R + 1/R: Then using
the results of the wave characteristics package we obtain

2

E- (R, 2) (11)

2 _ 1

E‘(R,z2) = E, (& 2) Ex(R, z) E

Coupling with the kinetic equation solved by CQL is achieved through the updating of

the coefficients By, — Fo,,. The electric field E_(R, 2) is interpolated onto the (r,8,) mesh.
Then, as described byKerbel and McCoy® . CQL can update the quasilinear coefficients and
recompute Pyp,(r,8;) in order to bring these quantities closer to self consistency. The power
is reinterpolated to (R, z) and the entire solution procedure for E_ is repeated to convergence,
with relaxation over previous iterates for &. Generally, less than five iterations are required.
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Figs.(2-3) represent contours of P,,,(R,z) and E_(R,z) for a case of inside launch
X-mode. The wave frequency was chosen so that the resonant layer would occur at R = Ry:
this represents a case in which all the wave energy is deposited in a single pass.

II1.B The high degree of canonical parallelization present in this formulation, coupled with
the extensive memory requirements inherent in electron kinetic equations makes CQL3D likely
grist for the CRAY-2 mill.

Clearly, once the quasilinear coefficients have been defined on the various flux surfaces.
the distribution functions may be advanced in parallel (over the radial coordinate) until it
seems necessary to update the RF wave field amplitude. The flow chart Fig. 4 describes the
calculation:

1) Initialization (can be done in parallel): The quasilinear setup calculation generates the array

of normalized interaction strengths, 5. and the packed array of resonance localization weights,
W(6,):

Boql = E0/‘101:'“’(01’) gk(ap)

The quantities b, and W are functions of orbit invariants vg, 8¢ as well as wave field parameters
w, kyj, k1 and wave polorization at resonance. The quantity i (0,). the spectral energy density.
is calculated as a time dependent quantity, using the wave depletion model.

2) Initialization (not in parallel): Solve the warm plasma dispersion relation at all points on
the (R, z) grid.

3) Iteration procedure to compute By, — Fo,, (can be partially done in parallel): Solution of
transport equation (6) is not done in parallel, however the calculation of By , — Fp,, in CQL
can be multiprocessed.

4) Fokker-Planck calculation (can be done in parallel): Both the determination of the collisional
coeficients and the advancement of %, can be done in parallel.

The code CQL3D does not attempt to keep all arrays in core simuitaneously. While this
would be possible for some runs on the CRAY-2, it would preclude the use of the code on any
other machine. Instead, any relevant arrays which are local to a given flux surface are stored
on disk and retrieved only when needed.

IV. Sample calculation

An example has been chosen to illustrate the marked variation of the RF heated electron
distribution versus plasma radius. Plasma parameters are chosen pertaining to the Doublet
Il ECH experiment.® viz.. 60 GHz inside launch of X-mode power into a 50 cm, aspect ratio
A = 3 plasma which has central electron density n, = 2 x 103 cm~2 parabolic profile.

We are considering the case corresponding to the RF power deposition illustrated in Figs.
2-3. This is after 2msec of 1V one-turn applied electric potential, followed by 1 MW of RF
power for 4msec. The average electron energy changes as shown in Fig. 5. The electrons
have been evolved with the nonlinear collision operator with no sinks of energy. so the plasma
temperature rises (indefinitely).
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The electron distribution function has been calculated on fifteen radial mesh points. In
Fig. 6 contour diagrams of the distributions obtained at r/a = 0.1, .23 and .5 are shown.
Near the plasma center, Fig. 6(a). the distortion of the tail is primarily due to the applied
D.C. electric field, even though the .8 W/cm3 Ohmic and RF powers to the distribution are
aproximately equal. The Doppler shifted parallel resonant energy on the outer equatorial
resonant surface is only 1.2keV in this case, so most of the RF heating is in the bulk. The
RF effect has been further reduced by the combined effects of energy deposition on the outer
flux surfaces, and the dispersive effects of the plasma which gives relatively little right-hand
polarized energy.

The distribution at r/a = .23 in Fig. 6(b) illustrates a tail temperature which slowly
increases with energy. The contours would be increasingly closely spaced with energy for
a Maxwellian distribution. The resonant parallel energy is 5.7keV in this case. RF power
deposition equal to 1.5 W /cm3 is approximately 3 times the Ohmic power.

Further out in the plasma at r/a = .5. shown in Fig. 6(c). the effect of the RF on the
distribution is entirely in the tail. The RF power deposition is only about .001 W/cma. but
this gives a marked effect beyond the 23 keV resonant energy.

Future work will include modules to calcululate the soft-X-ray and electron cyclotron

emission spectra from the electron distributions, thus facilitating direct comparison with ex-
periments.
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Figure Captions

FIG. 1. Geometry of wave damping model Rays propagate parallel to the equatorial plane.
RF power flowing into horizontal ray channels is uniform for —z; < z < z; and decreases
linearly to zero at z = +2,.

FIG. 2. Contours of P,;,,(R,2), the local wave power absorption. The contours span
three orders of magnitude and represent evenly spaced increments in In 10°.

FIG. 3. Contours of E_, the right hand component of the wave electric field. Contours
span three orders of magnitude.

FIG. 4. Flow chart describing the structure of CQL3D. Blocks occuring on the same
horizontal line are independent and can be computed in parallel (multi-tasked).

FIG. 5. Average electron energy. Electron energy as a function of minor radius at time
t =0 and t = 6msec. <

FIG. 6. Electron distribution function 7.. Contours of 7, over 13 orders of magnitude after

6msec of 1V one-turn applied electric potential followed by 4msec of RF wave excitation. The
three radial positions correspond to (a) r/a = .1. (b) r/a = .23, and (c) r/a = .5.
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